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Some lacunae in our previous argument that a single particle can not form a self-sustaining or “boot-
strap” system are filled. We propose a method of treating the “potential”’ that reconciles the Mandelstam
iteration procedure with the Regge asymptotic behavior of the double spectral function, by making a sub-
traction of the S-wave discontinuity. This leads to a more general argument that unitarity and crossing
symmetry put a very stringent limit on the magnitude of the coupling strength, and exclude the possibility
of even producing the bound state corresponding to the particle.

I. INTRODUCTION

N a recent paper! we attempted to demonstrate that
it was impossible for a scalar meson to “bootstrap”
itself. We showed that there was no solution to the
N/D equations for a crossing-symmetric S matrix which
had the required bound-state pole corresponding to the
meson. The residue of the direct-channel pole produced
in the solution g was much greater than the residues of
the crossed-channel poles g’ which were needed to pro-
duce a bound state of the correct energy. But our result
depended upon three assumptions which we now wish
to examine more closely.

The first was the dominance of nearby singularities,
of which we used only the crossed-channel poles and the
S-wave part of the two-particle elastic unitary cut.
Because of the very large coupling constant which was
needed, there is some doubt as to the validity of this
assumption, especially in view of results obtained in a
similar nonrelativistic potential problem, where com-
parison with the exact solution is possible. We refer to
the careful analysis of the N/D method by Luming.?
We have thus been led to try to obtain a better under-
standing of the limitations to our approximation to the
“potential.”

The second assumption was that one could neglect
the fact that the input poles should be continuable in
angular momentum, and could use a potential function
corresponding to the exchange of an elementary par-
ticle. This would not be a good approximation if the
trajectory on which the particle lay continued to high
values of the angular momentum, producing perhaps a
second particle of spin 2. There was also the possibility
that there might be a Pomeranchuk trajectory, with
the meson lying on a secondary trajectory. This would
correspond more closely to the real world, where cross
sections tend to constants at high energies. Though we
have not been able to use “Reggeized” potentials, we
have examined the output trajectories, and find that
neither of these possibilities seems to bring us nearer
to a “bootstrap’ solution.

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

1 P. D. B. Collins, Phys. Rev. 136, B710 (1964), subsequently
referred to as I.

2 M. Luming, Phys. Rev. 136, B1120 (1964).

We do, however, take note of the conflict between
the Mandelstam iteration procedure for obtaining the
elastic double-spectral functions, and the requirements
of Regge asymptotic behavior. We demonstrate a
method for resolving the conflict in practical calcula-
tions by explicitly subtracting the S-wave discontinuity.

Finally, in the last section we show that unitarity and
crossing symmetry put a general constraint on the
coupling constants, which is stringent enough to exclude
the values that were necessary to produce the meson
bound state. We thus have a new reason for rejecting
the possibility of a ‘“bootstrap’ solution.

II. FIRST BORN APPROXIMATION

Because we wish to examine complete trajectories,
we remove the threshold behavior and instead of the
partial-wave amplitude A4,(s) consider the function
Bi(s)=gs24,(s). This is necessary because the N/D
method will not guarantee the correct threshold be-
havior for A; unless, “per impossibile,” we know the
complete left-hand cut. In the usual way we set

Bl(s)=Nl(s)/Dl(s), (21)

where N;(s) has the left-hand and D;(s) the right-hand
cuts of B;(s), and we take B;(s) to have the same left-
hand singularities as the potential function V;(s) to be
derived subsequently.

Thus in dispersion form we have

1 = Im{D,(s)V.i(s")}
Ni(s)= Vz(s)Dl(s)—~/ _ ds' (2.2)
T 5 s'—s
and
1 = Im{D;(s")}
Di(s)=1+4~| —— 245, (2.3)
)y S —S
where so=4m? is the elastic threshold.
The unitarity relation is
Im{D:(5)} = —pu(s)N:(s), (2.4)

where the phase-space factor is
pu($)=[(s—4)/s [ (s—4)/4]

with relativistic kinematics, or pi(s)=[$(s—4) ]2 with
nonrelativistic kinematics.
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Combining (2.2), (2.3), and (2.4), we obtain

1= Vils")=Vils)
.\'1(5)=Vz(5)+~/d'——— - ———i(s)N(s"), (2.5)
) s s'—s
1= puls)Ns)
Di(s)=1—- / ds'f)-l—,)——lj—a (2.6)
) 5 s'—s

This form of the N/D equations has been preferred
to that used in I. The equations have been programmed
for the computer by Teplitz and Teplitz,? and in the
following calculations we have used a modified form of
their program.

If we consider the force from the exchange of a spin-
zero particle in both the ¢ and # channels we have

1 1
Vi(s)=——| d(cos8)P;(cosh)
2(]321. —1

g 8
!
T
{m2+ 2¢2(1+cosd)  m2+2¢2(1—cosh)

= (g/q>")Qu(1+ (m*/2¢%)) . (2.7)

This is the first Born approximation to the left-hand
cut, and, as in I, we find that to produce a bound state
at s=m? we require g/m?=16.5, but that then the
residue of the output pole is 105, or very far from a
“bootstrap” solution. In Fig. 1 we plot the position of
the bound state versus the coupling constant, and in
Fig. 2 we show the trajectory on which the particle lies.
It will be noted that the trajectory does not rise to
large values of /, but has a cusp at the threshold. Be-
cause the trajectory has a branch point at threshold,
the path of the second zero of the real part of the D
function (plotted as a dashed line in Fig. 2) can not
be identified with the falling trajectory, but is probably
reasonably close to it just above threshold. We believe
that the contribution of this sort of trajectory to the

Fic. 1. Relativistic
bound-state energy
squared s versus
coupling strength g
in units of m% By,
By,—second Born ap-
proximation, primary
and secondary. Cj,
Cy—first Born ap-
proximation, primary
and secondary.

#D. C. Teplitz and V. L. Teplitz, Lawrence Radiation Labora-
tory Report UCRL-11696, 1964 (unpublished).
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potential is well represented by the /=0 “elementary”
particle form which we have used (2.7).

However, Luming? has shown that in the nonrela-
tivistic case the solution obtained with such large
coupling constants is very far from the correct solution
of the Schrédinger equation with a Yukawa potential
ge ™ /r. (Note that Luming uses g? where we use g.)

The main differences between the nonrelativistic and
relativistic cases are that the phase-space factor p;(s)
is changed in the way explained above, and, since there
is only one crossed channel, we replace g by 3g. The
change of p; means that whereas relativistically one can
integrate (2.5) to infinity for /<1 and still have a
Fredholm equation, in the nonrelativistic situation this
is true only of /<%. Otherwise one must use a cutoff;
but, as Luming shows, the results depend very little on
the magnitude of the cutoff if it is large. We took an
upper limit of 20072 in all the calculations reported
here, but have verified the insensitivity of the results
to the value of this parameter in both the relativistic
and non-relativistic cases.

In Fig. 3 we show the plot of bound-state energy
versus coupling constant in the nonrelativistic situation
and compare it with the exact solution of the Schro-
dinger equation obtained by Hulthén and Laurikainer.*
This agrees with Luming’s Fig. 10. It will be observed
that there is a considerable discrepancy between the
two curves for s=m?. However, Luming also shows that
there is a great improvement if the second Born ap-
proximation to the left-hand cut is used, and we may
expect this also to be true for the relativistic case.

III. THE SECOND BORN APPROXIMATION

Figure 4 shows the Mandelstam representation for
the amplitude,

g g 1 = A(s)t)
A(s))= - -+ dar’
mi—it mP—u w4 (—1)
12 A,(su)
+—/ —du’, (3.1)
)y (4 —u) »

(14?.) Hulthén and K. V. Laurikainen, Rev. Mod. Phys. 23, 1
951).



F16. 3. Nonrelativistic bound-state energy squared s, versus
coupling strength g in units of m?2 A, As—solution of the
Schrédinger equation, primary and secondary. The other labels
correspond to those in Fig. 1.

or®

A (S;ZS)ZAR(‘Y:ZS)-I"AL(S:ZS) )

where A g has only the right-hand singularities, 4, the
left-hand, and z, is the scattering angle in the s channel.
We define even and odd signature amplitudes by
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T1c. 4. The Mandelstam representation.

Making the partial-wave projection of (3.3), we find
Ait(s)=(g/¢:)Qu(1+m*/2¢.%)

2 1 1
- st 171:, }
+7r2//p (s >[(s'—s) (s'+t'—4-|—s):|

)ds'dt' . (34)

2

t

XQ z<1+
2¢s
However, the second term in (3.4) has both left-hand
and right-hand cuts in s, and to obtain the “potential”

A£(s,2,)=Ar(s,2:)£AL(s, —2,) (3.2) from this expression we must subtract the contribution
of the right-hand cut (s=s’). Along this cut the
and find, because of the symmetry in s, ¢, and #, imaginary part is
+(5.0)= 2_ 2 Q:i(141'/2¢.)
A*(s,t)=2g/(m*—1) — i
2 © N 1 T 2q82
+—//Pst(s it )[—,—‘—,— so the contribution to 4; is
e (t'—5)(s'—s) "
2 [ fpals' ) Qu(141/29.%)
1 — - ds'dt’.
+ ]ds’dt’ , (3.3) 2 (s'—s) 2q,?
(' —t)(s'+t'—4+s) '
Thus the final expression for V.(s) is, when we
where p;; is the double spectral function. remember the threshold factor,
g m? 2
Vl(s)=——Ql(1+*)+—f/ps,(s',t')
q321+2 2q32 7I'2
1 ['Qz(l-i-l'/zqs?) Qi(1+1/29.%) 1 Qu(1+1/2¢7)) | }
X - + ds'dt’. (3.5)
(S"‘"S)L 2(Zs2l+2 ZQS’21+2 (s'+t’h~4_+_s) 2q82l+2

For the second Born approximation we must know
the elastic part of the double spectral function, which
may be obtained by iterating the pole or first Born

5 See, for example, G. . Chew and C. E. Jones, Phys. Rev.
135, B208 (1964).

approximation, with elastic unitarity. (See, for ex-
ample, Ref. 6.)

6S. C. Frautschi, Regge Poles and S-Matrix Theory (W. A.
Benjamin, Inc., New York, 1963), p. 59.
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The first Born approximation gives

A (s,t)=mgd(t—m?). (3.6)

Then
K=0
1 Arat’A,O (1) A, (s,
woorm 1
qu\/s KU2 (q-?Z;t:t,yt”)
soto

du'du’ A,V (s ')A, D (s,u”")
-+ :I , (3.7)
KI /2(g82’[’u,’u,')

where
K (g2t t")
=[E+124102 =2+ — (1 /g2 ], (3.8)
Combining (3.6), (3.7), and (3.8) gives
pst (s,0)= (2mg*/ g/ s) (P —4tm*—tm*/q*) 12, (3.9)
with a boundary at
s=[4/@—4)]+4. (3.10)

We use (3.9) substituted in (3.5) to give the “potential.”
The corresponding nonrelativistic expressions are

it Jr

% [Ql(1+t /2¢%)  Qi(141/2q4?)

- ] (3.11)
2q.21+2 2q,*

with?
058 (5,) = (rg%/2q,) (B—4m?—tm*/q2)~1/2

reflecting the absence of the third double-spectral func-
tion, and the altered unitarity condition.

Since p,;*' depends upon g?> we can expect it to be-
come more important as g increases. Figures 1 and 3
show the results of solving the N/D equations with
these ‘“‘potentials.” Again in Fig. 3 we have reasonable
agreement with Luming’s results.

In the relativistic case a bound state is produced
at m? with g=4.5m2, but g'=56m?, so we are no nearer
to a bootstrap solution. The trajectories concerned are
shown in Fig. 5. It still proves impossible to produce a
secondary trajectory passing through m? at /=0 how-
ever large g may be, so the chances of obtaining a boot-
strap solution in this way are negligible.

However, one may object to the use of this form of
the double-spectral function from the point of view of
continuation in angular momentum.® We know that
the contribution of a Regge pole to the amplitude may

(3.12)

7 See Ref. 6, p. 45.

8 This problem is discussed by G. F. Chew in M. Jacob and
G. F. Chew, Strong-Interaction Physics (W. A. Benjamin Inc.,
New York, 1964), p. 140.
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F16. 5. Trajectories for g=4.5m2 relativistic second
Born approximation.

be written

T [2&(¢)+1]
A(st)=————()(— g{")"(”Pau)(l-%— >
2 sin(ra(?)) 2q7

(3.13)

and our fixed /=0 pole comes from putting

a(t) = o (m?) (t—m?)

t—m?2
and then using this for all £ with
=3y (m?) /o (m?).

But (3.13) shows that the use of (3.6) for 4,0 (s,¢) is
not justified for large s, since we obtain

A (s,0) < 52O,

§%

Substituting in (3.7) would give us
ps®l(5,0) = //dt'dt" se@ta®)=1% (terms in ¢, ¢, ).
§0

Figure 5 shows that there is a region of ¢ from m? to
about 10m? for which Re a(f)>0, and the integral in
(3.11) is not well approximated by our use of @=0 in
this region, and it will even diverge if there is a region
where a(f)>%. But we also know that the asymptotic
behavior given by the first Mandelstam iteration is
incorrect, and in fact we should have

psi(s,t) & 52,

8§00

In other words, the elastic double-spectral function
does not represent the behavior of the total double-
spectral function for large s, and in fact (3.11) should
converge providing that Rea(#) <0.

In the following Section we present a method of in-
creasing the convergence of the integral (3.11) whereby
only the near (small s) region of the double spectral
function is important, and the asymptotic region, where
the elastic double-spectral function is not reliable, has
little influence.
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IV. A SUBTRACTION DETERMINED BY
REGGE ASYMPTOTIC BEHAVIOR

In the previous work! we tried to represent the effect
of the double-spectral functions by including the force
from the S-wave part of the elastic discontinuity in the
crossed channels. The double-spectral function, of
course, gives the sum of all the partial waves, but it is
still convenient to subtract the S-wave part and then
add it back in the same manner as in I. We know that
the Regge asymptotic behavior of the double-spectral
function determines the number of subtractions needed
to make integrals like (3.3) converge; and in our case,
where a(f) <1, we need make only one subtraction of
the S-wave discontinuity.

The total discontinuity in the / channel is

1 1 1
t\8,l)=— d ! st /;/ —l[ .
Adsh) r/ < pusls t)[(s'—s) (s'+t—4+s):| (0

’

2

g m? 2 t
A1(5)=~QL<1+—“)+—/Azl'=0(t’)Qz(1+v)> -
g 292 7 292722

at

COLLINS

and

2 Qo(1+s5"/2¢92)
AL () = / 45 por(s' g (42)

. th2
Thus we may write

1

1 1
Au(s,)=A 1= (D) +~ / ps#*””[ﬁfjt
™ (s'=s)  (s'+t1—4+s)

1 s
- JQ(»(1+——>:|(13/ . (4.3)
(It2 2(]t?

" 2 / / ( ,[,)|: 1 + 1 1 ( s’
- Pse(S b - 1+
) )Ly =it g\ o

Finally, removing the right-hand cut in analogy with Sec. III, we have

2 2 (141292
g Ql<1+ﬁ—o>+—/flt“=0(t')Q—(jQ—)(ﬂ’

Vl(s): 20+2 2042
g 2¢°) w 2g, 2

N 2// e t'){[ 1 N 1 1 s’
- st N bl - Yo 1
el e ()]

We can immediately see that the convergence of the
double integral has been improved, since

00 0u(145'/200%) = (2/5),

which cancels with the first term in the expansion of
[1/(s'—=s)+1/(s'+¢ —4+45)] in powers of (1/s)’, lead-
ing to

2 1
-—/fpst(s',t-')x <terms of order —)ds’dl' ,
m s?

which will converge if «(f) <1. Figure 5 shows that in
fact « is always less than 1, and so we have removed
the difficulties described in the previous section, though
at the expense of some computational complexity. The
second term in (4.6) is to be evaluated by the same sort

And since
g m?
A 1(8)=‘Ql<1+ﬁ)
(132 2q32
2 £\ dr
+—/At(s,t’)Ql(1+*) ) (44}
™ ZQSZ 2(132
we have
Ql(1+t'/29s2)
)des'dt’. (4.5)
2¢*
Qu1+1/2¢) 1 Qu(14t/2¢.2)
% _ . }ds'dl'. (4.6)
2¢21 (s'=s)  2¢,4*

of cycling procedure we described in I, whereby we
impose equality upon the discontinuities in the s and
¢ channels.

As in the previous section we shall make the approxi-
mation of replacing ps¢ by ps:°. Since only the low-s part
is now important, this should be a good approximation.

V. THE CONFLICT WITH UNITARITY

On evaluating the double integral in (4.6) we find
that its contribution to V, is negative, indicating that
the S-wave (¢-channel) part which we have removed is
greater than the contribution of the double-spectral
function, if we subtract from the double-spectral func-
tion’s contribution that part which gives rise to the
right-hand cut (in the s channel). Of course the S-wave
part is smaller than the total contribution of the double-
spectral function (since the individual partial waves are
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positive) and it is only because of the removal of the
right-hand-cut part that the result is negative. The
partial-wave series does not converge along the right-
hand cut.

Since p,;® depends on g2, this negative contribution
rapidly increases with the coupling. If we could achieve
self-consistency, the second term in (4.6) would out-
weigh the part subtracted, so that total potential would
be positive. But this term is limited by unitarity in the
! channel, whereas the double-spectral function is
calculated with the use of unitarity in the s channel only.

When we solve the equations we find that, except for
small values of g, the negative contribution of the
double-spectral function dominates, producing a re-
pulsive potential. Thus except for very small g the
elastic double-spectral function, obtained by iterating
the ¢-channel poles with elastic unitarity in the s
channel, conflicts with the requirement of unitarity in

‘““BOOTSTRAP" B 701
the ¢ channel. A unitary crossing-symmetric S matrix
can not be obtained.

The values of g which do not produce this conflict
are too small for a bound state to be formed at s=m?,
so it is not possible to make the .S matrix crossing sym-
metric even with regard to the positions of the poles as
we had supposed in I.
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Two-Body Effective-Mass Spectra in the Products of the Reaction
y+p — p+=t+=" and the ¢ Resonance
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Laboratori Nazionali del Sincrotrone, Frascati, Roma, Italy
(Received 25 February 1965)

By means of spark chambers and counters we measured the (z*,x7) and (#%,p) invariant-mass spectra
obtained from the products of the reaction y+p — p+=+-+=~. They are in disagreement with the Cutkosky-
Zachariasen model which takes into account the effect of the , § nucleon isobar. To fit our data we introduce
a - final-state enhancement factor with resonant behavior. The resonance energy is around 380 MeV.

1. INTRODUCTION

SING the 1100-MeV bremsstrahlung beam of
the Frascati electron synchrotron we studied the
process

v+p— ptattr. )]

Our aim was to measure the spectra of the invariant
mass of the pion-pion system #,, and pion-nucleon
system .. This was obtained by determining the
flight directions of the three final particles together
with the proton momentum by means of a system of
spark chambers. The observed protons are those
emitted at laboratory angles 6, around 35° Our ex-

* Present address:
Paris, France.

T Present address: Brookhaven Laboratory, Upton, New York.

I Istituto di Fisica dell’Universitd, Roma and Istituto Nazionale
di Fisica Nucleare, Sezione di Roma, Italy.

§ Present address: Stanford Linear Accelerator, Stanford,
California.

|| Istituto di Fisica dell’Universita, Roma and Istituto Nazionale
di Fisica Nucleare, Sezione di Roma. Present address: Istituto di
Fisica dell’Universitd di Pisa and Istituto Nazionale di Fisica
Nucleare, Sezione di Pisa, Italy.

Euratom, SRFC, Fontenay-aux-Roses,

perimental method does not allow us to distinguish the
charges of the two pions.

In our kinematical configuration the (m,p) invariant
mass lies within the interval 1100-1400 MeV, and
therefore the contribution of the £, £ nucleon isobar
should be dominant. This contribution has been cal-
culated by Cutkosky and Zachariasen! (abbreviated
CZ) making use of the static model. The results of our
experiment are in strong disagreement with the CZ
predictions, both in the absolute values of the cross
sections and in the shape of the m., spectra. If we
assume that the recoil corrections to the CZ model do
not change its predictions qualitatively, our experi-
mental results may be taken as an indication of the
presence of other important terms besides those due
to the £, & isobar. Actually a noteworthy contribution
of the pion-pion interaction in the T'=J=1 state
(p meson) has been brought to light in reaction (1)
by McLeod, Richert, and Silverman? for values of

1R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108
(1956) ; abbreviated CZ.

2 D. McLeod, S. Richert, and A. Silverman, Phys. Rev. Letters
7, 383 (1961).



