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Some lacunae in our previous argument that, a single particle can not form a self-sustaining or "boot-
strap" system are filled. We propose a method of treating the "potential" that reconciles the Mandelstam
iteration procedure with the Regge asymptotic behavior of the double spectral function, by making a sub-
traction of the S-wave discontinuity. This leads to a more general argument that unitarity and crossing
symmetry put a very stringent limit on the magnitude of the coupling strength, and exclude the possibility
of even producing the bound state corresponding to the particle.

I. INTRODUCTION
'

N a recent paper' we attempted to demonstrate that
- it was impossible for a scalar meson to "bootstrap"

itself. We showed that there was no solution to the
N/D equations for a crossing-symmetric Smatrix which
had the required bound-state pole corresponding to the
meson. The residue of the direct-channel pole produced
in the solution g was much greater than the residues of
the crossed-channel poles g' which were needed to pro-
duce a bound state of the correct energy. But our result
depended upon three assumptions which we now wish
to examine more closely.

The first was the dominance of nearby singularities,
of which we used only the crossed-channel poles and the
S-wave part of the two-particle elastic unitary cut.
Because of the very large coupling constant which was
needed, there is some doubt as to the validity of this
assumption, especially in view of results obtained in a
similar nonrelativistic potential problem, where com-
parison with the exact solution is possible. We refer to
the careful analysis of the N/D method by Luming. '
We have thus been led to try to obtain a better under-
standing of the limitations to our approximation to the
"potential. "

The second assumption was that one could neglect
the fact that the input poles should be continuable in
angular momentum, and could use a potential function
corresponding to the exchange of an elementary par-
ticle. This would not be a good approximation if the
trajectory on which the particle lay continued to high
values of the angular momentum, producing perhaps a
second particle of spin 2. There was also the possibility
that there might be a Pomeranchuk trajectory, with
the meson lying on a secondary trajectory. This would
correspond more closely to the real world, where cross
sections tend to constants at high energies. Though we
have not been able to use "Reggeized" potentials, we
have examined the output trajectories, and find that
neither of these possibilities seems to bring us nearer
to a "bootstrap" solution.

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

~ P. D. B. Collins, Phys. Rev. 136, B710 (1964), subsequently
referred to as I.' M. Luming, Phys. Rev. 136, 81120 (1964).

We do, however, take note of the conflict between
the Mandelstam iteration procedure for obtaining the
elastic double-spectral functions, and the requirements
of Regge asymptotic behavior. We demonstrate a
method for resolving the conflict in practical calcula-
tions by explicitly subtracting the 5-wave discontinuity.

Finally, in the last section we show that unitarity and
crossing symmetry put a general constraint on the
coupling constants, which is stringent enough to exclude
the values that were necessary to produce the meson
bound state. We thus have a new reason for rejecting
the possibility of a "bootstrap" solution.

II. FIRST BORN APPROXIMATION

alld
Sp s —s

1 "Im{Dt(s')}
Dt(s) =1+- dS (2.3)

Sp s —s

where so=4m' is the elastic threshold.
The unitarity relation is

Im{Dt(s) }= pt(s)Nt(s), —
where the phase-space factor is

p (s) = ((s—4)/s]'"L(s —4)/4]'

(2 4)

with relativistic kinematics, or pt(s) = Le (s—4)]'+"' with
nonrelativistic kinematics.

Because we wish to examine complete trajectories,
we remove the threshold behavior and instead of the
partial-wave amplitude At(s) consider the function
Bt(s)=tt, "At(s). This is necessary because the N/D
method will not guarantee the correct threshold be-
havior for A~ unless, "per impossibile, " we know the
complete left-hand cut. In the usual way we set

Bt(s)=Nt(s)/Dt(s), (2.1)

where Nt(s) has the left-hand and Dt(s) the right-hand
cuts of Bt(s), and we take Bt(s) to have the same left-
hand singularities as the potential function Vt(s) to be
derived subsequently.

Thus in dispersion form we have

1 "Im{Dt(s') Vt (s') }
Nt(s) = Vt(s)Dt(s) —— ds' (2.2)
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Combining (2.2), (2.3), and (2.4), we obtain

1 " pi(s')X)(s')
D((s) = 1—— ds'

sp s s
(2.6)

1 " V( (s') —V( (s)
:Vi(s) = Vi(s)+ — ds'— pi(s');6;(s'), (2.5)

yp s —s
FiG. 2. Trajectory

for g =16.5m' rela-
tivistic first Born
approximation.

0.8—

0,4—

- 0.4

'l

1
'l

\
'l

-+x-—

This form of the A/D equations has been preferred,
to that used in I. The equations have been programmed
f the computer by Teplitz and Teplitz, ' and in theor e

ffollowing calculations we have used a modified form o
their program.

If we consider the force from the exchange of a spin-
zero particle in both the t and I channels we have

Vi(s) = d(cosa)Pi(cosg)
2gs ~

g
X +

m +2q (1+cosP) nP+2q, 2(1—cosP)

= (g 'q "+')Q&(1+(m'/2qP) ) . (2.7)

24

20
FIG. 1.Relativistic

bound-state energy
squared s versus
coupling strength g
in units of nz2. 81,

l282—second Born ap-
proximation, primary
and secondary. Ci,
C2—first Born ap-
proximation, primary
and secondary. 4

This is the first Born approximation to the left-hand
cut, and, as in I, we find that to produce a bound state
at s=m' we require g/m'=16. 5, but that then the
residue of the output pole is 105, or very far from a
"bootstrap" solution. In Fig. 1 we plot the position of
the bound state versus the coupling constant, and in
Fig. 2 we show the trajectory on which the particle lies.
It will be noted that the trajectory does not rise to
lar e values of /, but has a cusp at the threshold. Be-
cause the trajectory has a branch point at t»res o
arge vau

h shold
the path of the second zero of the real part of the D
function (plotted as a dashed line in Fig. 2) can not
be identified with the falling trajectory, but is probably
reasonably close to it just above threshold. We believe
that the contribution of this sort of trajectory to the

—0.8
-40 -20 IO

potential is well represented by the l=0 "elementary"
particle form which we have used (2.7).

However, Luming' has shown that in the nonrela-
tivistic case the solution obtained with such large
coup lllgling constants is very far from the correct so ution

'
lof the Schrodinger equation with a Yukawa potentia

ge™/r.(Note that Luming uses g' where we use g. )
The main differences between the nonrelativistic and

relativistic cases are that the phase-space factor p~(s)
is changed in the way explained above, and, since there
is only one crossed channel, we replace g by —,'g. The
change of p~ means that whereas relativistically one can
integrate (2.5) to infinity for t(1 and still have a,

Fredholm equation, in the nonrelativistic situation this
is true only of /( —,'. Otherwise one must use a cutoff;
but, as Lurning shows, the results depend very little on
the magnitude of the cutoff if it is large. We took an
upper limit of 200@x' in all the calculations reported
here, but have verified the insensitivity of the results
to the value of this parameter in both the relativistic
and non-relativistic cases.

In Fig. 3 we show the plot of bound-state energy
versus coupling constant in the nonrelativistic situation
and compare it with the exact solution of the Schro-
dinger equation obtained by Hulthen and Laurikainer. 4

This agrees with Luming's Fig. 10. It will be observed
that there is a considerable discrepancy between the
two curves for s= m'. However, Luming also shows that
there is a great improvement if the second Born ap-
proximation to the left-hand cut is used, and we may
expect this also to be true for the relativistic case.

III. THE SECOND BORN APPROXIMATION

Figure 4 shows the Mandelstam representation for
the amplitude,

g g 1 "A (st')
2 (s t) = ++— -dt, '

m' —t m' —u 7r ~, (t' —t)

1 "A.„(s,u')
+— du', (3.1)

(u' —u)

3 D. C. Teplitz and V. L. Teplitz, Lawrence Radiation Labora-
tory Report UCRL-11696, 1964 (unpublished}.

4L. Hulthen and K.. V. Laurikainen, Rev. Mod. Phys. 23, 1
(1951).
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FIG. 4. The MMandelstam representation.

FIG. 3~ . Nonrelativistic bound-state ener s u
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Making the artial-g p tial-wave projection of (3.3), we find

A '( ) = (a/q'')Q (1+ '/2q. ')

or'

A (s,s,)=A ii(s,s,)+A r, (s,s,),

A+(s,s,)=Aii(s, s,)aAr, (s, —s,) (3.2)

and finnd, because of the sym tme ryins, t, andI,

A+(s, t) = 2g/(nz' —t)

1
p. i (s', t')

(t' t) (s' s)— —

(t' t) (s'+t' 4+s—)—
where p, & is the double spectral function

where Az has only the right-hand singu, L,

z, is t e scatterin an le in
W~d fi d ddan o signature amplitudes bes y

2 Qi(1+t'/2q ')
p,„(s,t')—

7l 2g~

so the contribution to Ag is

2

7r2 (~i

Thus t et e final expression for V& s is
remember the thresh 1d fres o actor,

p„(s',t') Qi(1+t'/2q, , ')

(s' —s) 2
ds df

+— p. (S,t) +
(s' —s) (s'+ t' 4+s)—

)&Qii 1+ ids'dt'. (3.4)
2q 'I

However, the second term in 3.4in . as both left-hand
— an cuts in s, and to obtain the "

p t
sion we must subtrac

imaginary part is
long this cut the

Qi(1+ t'/2q. -') Qi(1+ t'/2q, .')—
X

(s —s) 2q 2'+2 2q, 21+2

s = i,i+— p, (s', t')
2gs

(s'+ t' 4+s)—Qi(1+t /2q. ')
ds'dt'. (3.5)

2gs

For the second Born approximation we m
the elastic part of the double s ectr

aine y iterating the pole or first Born
' See, for example, G. P. Chew

135 8208 (1964)

approximation„with el'.st.ic unitarit:a
' „'. e as.ic unitarity. (See, for ex-

schi, Regge I'oles and 5-' S. C. Fraut
I N Y k 196en, , or, 3), p. 59.
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1roxlmatl011 givesThe first Born app

A, "i(s,t) =~g&i(t —m') . (3 6)
Then

p, ie'(s, t) =
7rq, s

-dt'dt"A, &'& (s,t )A,-d« ' &'i s t")

K't'(q ', t, t', t")

0.2—

0
CC

-0.2—

l
\

l

I i i

Ildu'du"A „&'&(s,u') A „"(s,u

K't'(qP, t,u', u")
where

E(q,'tt t )
I t'I

—ttt q,
I I/ 0 (3 g)

C

= P+t'2+t'" —2(tt'+t't

n 3.6, 3.7), and (3.8) givesombining (3.6, 3. , an . '
es

,pie( st)= (27rg'/q, gs t2 —4tm' —tm q,
—

with a boundary at

4)/+4 (3.10)s- C4/(

( . in 3.5) togive the "potentia. "
( )

e in nonrelativistic exprThe corresponding nonre
' ' '

ex r
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SUBTRACTION DETERMININED BY
OTIC BEHAVIORREGGE ASYMPT

and
Qo ( 1 +s /2&tH)

—dsds pat(s ))
2 o2 If~ g

(&.2)

Thus we may write

1 1
(s', t)

(
' —s) (s'+t 4+s)—

1
A, (s, t) =A, ' ='(t)+

I

——
Q(, 1+—ds'. (4.3)

2g]
And since

g 7%"

AE(s) =—
QE 1+

2 2gs

t.
' dt'

+— A, (s,t')Q 1+, (4.4)
2/a III'sA, (s,t) =— ds p,.„',, (4.1)

we have

'
d t represent the effectwork' we tne o rIn the previous w

luding the force
th

ectral functions y inc u
'

art of the elastic iscofrom the S-wave par
ls. The double-spec ratral function, ofcrossed channe s.

sum of all the par iaartial waves, but it iscourse, gives the sum

~art and thensubtract the -wavestill convenient to su

fth do bl t ls totic behavior o t e
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h h l

discontinuity.
The total discontinuity in t e c a

dt
, s =—, +— A, "=

(O')tQ )1+

2
+

7r2

1 '""""., d . (4.3)Qo 1+
4+s) g( 2gg g,,(s' —s) s t—

with Sec. III, we haveright-hand cut in analogy wiFinal} removing the rig - a

V((s) =
m' 2 Q((1+t'/2q, .')

Q 1+ +— A," '(t') =dt'
L

2IIf~
2f+2

2
+

7r2

s
=Q0 1+

) ('+' —4+.)
2 o)Qi (1+t', C') Qi(+t/ C.

,2 l+2"+'. (s' —s) 2q,,2gs
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positive) and it is only because of the removal of the
right-hand-cut part that the result is negative. The
partial-wave series does not converge along the right-
hand cut.

Since p, ~' depends on g', this negative contribution
rapidly increases with the coupling. If we could achieve
self-consistency, the second term in (4.6) would out-
weigh the part subtracted, so that total potential would
be positive. But this term is limited by unitarity in the
t channel, whereas the double-spectral function is
calculated with the use of unitarity in the s channel only.

When we solve the equations we find that, except for
small values of g, the negative contribution of the
double-spectral function dominates, producing a re-
pulsive potential. Thus except for very small g the
elastic double-spectral function, obtained by iterating
the t-channel poles with elastic unitarity in the s
channel, conflicts with the requirement of unitarity in

the t channel. A unitary crossing-symmetric 5 matrix
can not be obtained.

The values of g which do not produce this conflict
are too small for a bound state to be formed at s= m',

so it is not possible to make the 5 matrix crossing sym-
metric even with regard to the positions of the poles as
we had supposed in I.
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Two-Body Effective-Mass Syectra in the Products of the Reaction
q+ p ~ p+ ~++ ~ and the e Resonance
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Sy means of spark chambers and counters we measured the (w+, w ) and (w+, p) invariant-mass spectra
obtained from the products of the reaction y+ p —+ p+~++71- .They are in disagreement with the Cutkosky-
Zachariasen model which takes into account the eBect of the —,', -', nucleon isobar. To 6t our data we introduce
a 71--m 6naI-state enhancement factor with resonant behavior. The resonance energy is around 380 MeV.

1. INTRODUCTION
' ' ""SING the 1100-MeV bremsstrahlung beam of

the Frascati electron synchrotron we studied the
process

y+ p ~ p+ir++ii-.

Our aim was to measure the spectra of the invariant
mass of the pion-pion system m and pion-nucleon
system m„. This was obtained by determining the
flight directions of the three 6nal particles together
with the proton momentum by means of a system of
spark chambers. The observed protons are those
emitted at laboratory angles O„around 35'. Our ex-

*Present address: Kuratom, SRFC, Fontenay-aux-Roses,
Paris, France.

$ Present address: Brookhaven Laboratory, Upton, New York.
$ Istituto di Fisica dell'University, , Roma and Istituto Nazionale

di Fisica Nucleare, Sezione di Roma, Italy.
$ Present address: Stanford Linear Accelerator, Stanford,

California.
~)

Istituto di Fisica dell, Universita, Roma and Istituto Nazionale
di Fisica Nucleare, Sezione di Roma. Present address: Istituto di
Fisica dell'Universita di Pisa and Istituto Nazionale di Fisica
Nucleare, Sezione di Pisa, Italy.

perimental method does not allow us to distinguish the
charges of the two pions.

In our kinematical configuration the (rr, p) invariant
mass lies within the interval 1100—1400 MeV, and
therefore the contribution of the 2, ~ nucleon isobar
should be dominant. This contribution has been cal-
culated by Cutkosky and Zachariasen' (abbreviated
CZ) making use of the static model. The results of our
experiment are in strong disagreement with the CZ
predictions, both in the absolute values of the cross
sections and in the shape of the m spectra. If we

assume that the recoil corrections to the CZ model do
not change its predictions qualitatively, our experi-
mental results may be taken as an indication of the
presence of other important terms besides those due
to the ~3, ~3 isobar. Actually a noteworthy contribution
of the pion-pion interaction in the T=3= 1 state
(p meson) has been brought to light in reaction (1)
by McLeod, Richert, and Silverman, ' for values of

'R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108
(1956); abbreviated CZ.

2 D. McLeod, S. Richert, and A. Silverman, Phys. Rev. Letters
7, 383 (1961).


